O.P.Code:23HS0840b

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year II Semester Regular & Supplementary Examinations June-2025 ENGINEERING PHYSICS

		ENGINEERING PHYSICS			
		CSE(Artificial Intelligence and Machine Learning)			
Tim	e:	3 Hours	Max.	Mark	ks: 70
		PART-A			
		(Answer all the Questions $10 \times 2 = 200 \text{ Marks}$)			
1	a	Define Diffraction.	CO1	L1	2M
1	-				
	b	Define Polarisation.	CO1	L1	2M
	c	Define unit cell.	CO ₂	L1	2M
	d	Draw the planes for given Miller indices i). (111) ii). (202) in cubic system.	CO ₂	L2	2M
	e	Define dielectric polarization	CO ₃	L1	2M
	f	What is Bohr magnetron?	CO ₄	L1	2M
	g	What are matter waves	CO5	L1	2M
	s h	Define mean free path.	CO5	L1	2M
	_	•			
	i	What is extrinsic semiconductor?	CO6	L1	2M
	j	What are the applications of Hall effect	CO ₆	L1	2M
		(Answer all Five Units 5 x $10 = 50$ Marks) UNIT-I			
2		Discuss the theory of interference of light due to thin films by reflection with suitable ray diagram.	CO1	L2	10M
		OR			
3	a	Describe the propagation of polarized light in Quarter – Wave plate.	CO ₁	L3	5M
		Describe the propagation of polarized light in Half – Wave plate.	CO1	L3	5M
		UNIT-II			
4			COA	1.2	(N //
4	a	Define atomic packing fraction and derive it for simple cubic crystal	CO ₂	L3	6M
		structure.	~~~		
	b	Write the important features of Miller indices.	CO ₂	L1	4M
		OR			
5	a	Explain how crystal structure determined by Powder X-Ray diffraction	CO ₂	т 2	7M
		method.		L2	
	b	What are the advantages of Powder X-Ray diffraction method?	CO ₂	L1	3M
	-				
_		UNIT-III			
6		Explain about electronic, Ionic and Orientation polarizations.	CO ₃	L2	10M
		OR			
7	a	Explain hysteresis of ferromagnetic material.	CO4	L2	6M
	b	Distinguish between Soft and Hard magnetic material.	CO ₄	L2	4M
		UNIT-IV			
8		Describe the behavior of particle in a one dimensional infinite potential well	CO5	L2	10M
o		•	COS	LZ	TUIVI
		in terms of Eigen values and function.			
_		OR			
9	a	Derive an expression for electrical conductivity in a metal by quantum free	CO ₅	L3	6M
		electron theory.			
	b	What are the advantages of quantum free electron theory over classical free	CO ₅	L1	4M
		electron theory?			
		UNIT-V			
10	_		001	T 4	ENE
10		Explain the drift and diffusion current densities in semiconductors.	CO6	L1	5M
	b	Derive Einstein's relation for charge carriers in semiconductors.	CO ₆	L3	5M
		OR			
11	a	Describe the Hall effect in semiconductors.	CO ₆	L1	7M
	b	Find the diffusion co-efficient of electron in Si at 300K if μ e=0.19m2-V ⁻¹ S ⁻¹ .	CO6	L3	3M
	-	*** END ***			
		E111D			

D34